
ISRAEL JOURNAL OF MATHEMATICS. Vol. 24. Nos. 3-4. 1976 

A N  R d A N A L O G U E  OF V A L E N T I N E ' S  
T H E O R E M  ON 3 - C O N V E X  SETS 

BY 

MARILYN BREEN 

ABSTRACT 

This paper deals with an R u analogue of a theorem of Valentine which states 
that a closed 3-convex set S in the plane is decomposable into 3 or fewer closed 
convex sets. In Valentine's proof, the points of local nonconvexity of S are 
treated as vertices of a polygon P contained in the kernel of S, yielding a 
decomposition of S into 2 or 3 convex sets, depending on whether P has an even 
or odd number of edges. Thus the decomposition actually depends on c (P'), the 
chromatic number of the polytope P' dual to P. 

A natural analogue of this result is the following theorem: Let S be a closed 
subset of R 'j, and let Q denote the set of points of local nonconvexity of S. We 
require that Q be contained in the kernel of S and that Q coincide with the set 
of points in the union of all the (d - 2)-dimensional faces of some d-dimensional 
polytope P. Then S is decomposable into c(P') closed convex sets. 

Introduction 

Let  S be  a subset  of R ~. T h e  set S is said to be  3-convex if and  only if for  every  

3 - m e m b e r  subse t  of S, at least  one  of the  line segmen t s  d e t e r m i n e d  by these  

po in t s  lies in S. A po in t  q in S is ca l led  a point of local convexity ors if and  only if 

t he re  is some  n e i g h b o r h o o d  N of  q for  which N A S is convex.  If S fails to be  

local ly  convex  at some  po in t  q in S, then q is ca l led  a point of local nonconvexity 
(lnc po in t )  of S. 

V a l e n t i n e  [3] has  p r o v e d  tha t  a c losed  3-convex set S in the  p l ane  is 

d e c o m p o s a b l e  in to  3 o r  fewer  c losed  convex  sets, and  in this  pape r ,  an a t t e m p t  is 

m a d e  to ob ta in  cond i t ions  u n d e r  which an ana logue  of V a l e n t i n e ' s  resul t  may  be  

p r o v e d  in R d. A key cons t ruc t ion  in V a l e n t i n e ' s  p roo f  involves  the  set of lnc 

po in t s  of S, which may  be  t r e a t e d  essent ia l ly  as ver t ices  of a po lygon  P con t a ined  

in the  ke rne l  of S, y ie ld ing  a t h ree  m e m b e r  d e c o m p o s i t i o n  of S when P has an 

odd  n u m b e r  of edges ,  and  a two m e m b e r  d e c o m p o s i t i o n  o therwise .  Since for  any  

c losed  3-convex set S, the  set of lnc po in ts  of S lies in k e r S ,  we r ep l ace  

V a l e n t i n e ' s  r e q u i r e m e n t  that  S be  3-convex with this w e a k e r  hypothes i s .  
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The following notation will be employed: If P is a d-dimensional polytope, 

each facet F of P determines a hyperplane H = att F, and throughout the paper, 

we will assume that P C_ cl (H1), where H1, H2 denote distinct open halfspaces 

corresponding to H. Moreover, we adopt the following familiar terminology: For 

any point x in R a, we say that x is beyond F if x is in/-/2 and that x is beneath F 

i f x  is in H~. 

As usual, conv S, aft S, cl S, int S, and ker S will denote the convex hull, affine 

hull, closure, interior, and kernel, respectively, for the set S. 

THEOREM 1. Let S be a closed subset of R ~ and let Q denote the set of lnc points 

of S. If  Q is contained in ker S and if Q coincides with the set of points in the union 

of all the (d - 2)-dimensional faces of some d-dimensional convex polytope P, 

then S is decomposable into c (P') closed convex sets, where c (P') denotes the 

chromatic number of the graph of the polytope P' dual to P. 

PROOF. The proof will require several steps: First we show that every point of 

S lies beyond at most one facet of P, and for each facet F of P, the subset 

(wedge) W~ of S beyond F is convex. For facets F and G of P which do not 

intersect in a (d - 2)-face, the set W~ U We U P is convex. Finally, the chromatic 

decomposition for vertices of P' induces a partition among facets of P, with no 

associated facets intersecting in a (d - 2)-face. This gives a natural decomposi- 

tion of wedges of S into c (P') convex sets. 

We begin with the following lemma. 

LEMMA 1. Let F be any facet of P, V any set of vertices of P with V ~ F, and let 

Y{ denote the collection of hyperplanes determined by facets K of cony (F U V) 

with K ~  F. If  x is a point of S beyond F, then x E A { c I ( H 1 ) : H  in 3{}. 

PROOF OF LEMMA 1. Note that since V~Z F, the polytope conv(F  U V) is 

d-dimensional. Also, since Q c_ kerS, it follows that conv Q = PC_kerS.  

Therefore S = cl (int S), and since n {cl(H1) : H in 3{} is closed, without loss of 

generality we may assume that x E int S and that x is not in the atline hull of any 

d-member  subset of the vertex set of P. 

To prove the lemma, assume on the contrary that x ~ n {cl (H~): H in 3{}, to 

obtain a contradiction. Then there is some facet K ~  F of cony (F U V) with x 

beyond K. We show that K may be selected so that K A F  is a ( d - 2 ) -  

dimensional face of F. 

If d i m K  n F_-< d - 3 ,  consider the polytope F as a subset of the ( d - 1 ) -  

dimensional space att F. Let ,if0 denote the collection of all (d - 2)-dimensional 

hyperplanes in att F determined by facets A0 of F. Clearly aft K cannot contain 
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any point relatively interior to n {cl(H1):H in ,~0} since this intersection is 

exactly F. For each Ao in ,~o, we select the corresponding facet A of 

c o n v ( F U  V) distinct from F and containing A0, and define s / =  

{A : A0 in M0}. Then .~ is exactly the collection of facets of conv (F U V) which 

share a ( d -  2)-face with F. Moreover, every vertex of K lies in or beneath 

A,A E s~ U{F}, and since a f fK contains no relative interior point of 

n {cl(H~): H in Mo} in aft F, the region 

n {(aft A)I : A in M} n (aft F)2 n (aft K)2 

is empty. We are assuming that x ~  aft A for A in .if, so x must lie beyond some 

A in ,if, and we may indeed choose K so that K n F is a ( d - 2 ) - f a c e  of F. 

Select q E rel int (K n F), the relative interior of the set K n F. (In case d = 2, 

then K O F = {q} .) Consider the ray R (x, q) emanating from x through q. We 

assert that R (x, q) contains points interior to conv(F U V): Let J be any facet 

of cony (F U V) to show that R (x, q) - [x, q ] contains an interval (q, r) beneath J. 

There are three possibilities to consider. Recall that by our previous assumption, 

x ~ atI J. In case x is beyond J, then since q is either in or beneath J, R (x, q) 

Ix, q] necessarily lies beneath J. If x is beneath J and q is, too, then certainly 

R (x, q) - [x, q] contains some open interval (q, r) beneath J. The only remaining 

possibility is that x lie beneath J and q lie in J. In this event, J could not be F or 

K (since x is beyond both F and K ). Furthermore, since q E F n K n J, F n 

K n J would be a nonempty face of conv(F U V), and since no three distinct 

facets may intersect in a (d - 2)-face, F n K n J would be a face of conv (F U V) 

of dimension =< d - 3, and 3 _-< d. Then since q ~ F n K n J, q could not belong 

to relint (F n K). Therefore, this case cannot occur. We conclude that R (x, q) 

[x, q] necessarily contains some interval (q, r) beneath J for every facet J of 

cony (F U V). Using the fact that there are finitely many such facets, there is 

some ro on R (x, q) - [x, q] for which (q, ro) _C int conv (F U V) C ker S, and the 

assertion is proved. 

If N is any neighborhood of x in S, then conv (N U {r0}) lies in S and contains q 

as an interior point, contradicting the fact that q is an lnc point of S. At last we 

have a contradiction, our assumption is false, and x indeed lies in O {cl(H1) : H 

in ~(}, completing the proof of Lemma 1. 

For each facet F of P, we define the wedge WF determined by F to be the set 

of points of S which lie beyond F. Clearly every point of S is either in P or in 

some wedge, and by Lemma 1, every pair of distinct wedges are disjoint. We 

assert that each wedge of S is convex: Let F be any facet of P, W = WF the 

corresponding wedge with x, y in W. Select p E relint F. Then p E ker S, so 
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[p, x] U [p, y] C_ S. Since x and y are beyond F and pf f  Q, there can be no lnc 

point of S in conv{p, x, y}, and by a lemma of Valentine [4, cor. 1], 

conv{p, x, y} C_ S. Thus [x, y] _C $, and since [x, y] is beyond F, [x, y] _C W, the 

desired result. 

To obtain the decomposition for S, one more lemma will be needed. 

LEMMA 2. Let F, G be facets of P with dim (F  n G)  =< d - 3, and let W, U be 
the wedges of S determined by F, G respectively. Then W U U U P is convex. 

PROOF OF LEMMA 2. Since P, W, and U are convex, it is sufficient to consider 
p E P, w ~ IV, u E U, to show that each of the corresponding segments is in 
W N U U P .  

To see that [w, u] C_ W U U O P, let T denote the polytope cony (F U G), and 
let ¢ denote the collection of hyperplanes determined by facets J of T, where 
J ¢  F, G. Then by Lemma 1, each of w and u must lie in n {cl(H1): H in ~}, 
and [w, u] C_ n {cl (H1) :  H in ~}. Furthermore, since there is a member  of 
corresponding to every ( d -  2)-face of F, and w is beyond F while u is not, 
[w, u] must intersect FC_ kerS, and [w, u] _C S. Then using the fact that [w, u] 
intersects both F and G, it is easy to show that [w, u] _C W U U U R 

Similarly, to show [ w , p ] C _ W U U U P ,  let ~/" denote the collection of 
hyperplanes determined by facets K of P, where K ~  F. Repeating our earlier 
argument, [w,p] intersects F, and [w,p] C_ W U P. By a parallel proof, [u,p] C_ 
U U P. Thus each of the segments lies in W U U U P and W U U O P is convex, 
finishing the proof of Lemma 2. 

We obtain a decomposition for S in the following manner: Let P '  denote the 
polytope dual to P, c (P') the chromatic number of the graph of P'.  (The reader is 
referred to [1, p. 46, p. 212] and [2, p. 224] for the necessary definitions.) Let 
{% : 1 =< i _-< c (P')} be a chromatic decomposition for the vertices of P'.  Recall 
that for v, w in o//., v and w are not joined by an edge of P'. Since there is a 
one-one correspondence between vertices of P '  and facets of P, the decomposi- 
tion {o//. } induces a partition { ~ : 1  _-<iN c (P')} among facets of P having the 
property that for F, G in ~ ,  F and G do not intersect in a ( d -  2)-face of P. 

The partition { ~  : 1 _-< i =< c (P')} yields the required decomposition for S. For 
each ~,, let ~ denote the collection of wedges of S determined by members of 
~,. Using Lemma 2, an easy induction shows that S, - U { W  U P :  W in o/~} is 
convex, 1 _-< i _-_N c (P'). Since S = U {S~ : 1 _- i _- c (P')}, this finishes the proof of 
the theorem. 

The author wishes to thank the referee for suggesting the following result. 

THEOREM 2. If  P is a d-dimensional convex polytope, then there exists a 
compact set S having the following properties: 
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1) The set Q o[ lnc points o[ S is contained in ker S, and Q is the union of all 

(d - 2)-faces of P. 
2) I f  S is decomposed into k closed convex sets, then k >= c (P'), where c (P') is 

the chromatic number of the graph of the polytope P' dual to P. 

PROOF. For each facet F of P, define the wedge of F to be {x :x l i es  
beyond F and beyond no other facet of P}. Then S should consist of P and the 
wedges (or suitably large subsets of wedges) of all the facets of P. 

Note that Theorem 2 implies the bound c (P') is best possible. Also notice that 
for d = 2, c (P') is either 2 or 3, paralleling results obtained by Valentine. 

In conclusion, something should be said about the case in which Q is properly 
contained in the union of the (d - 2)-faces of P. Without additional hypothesis, 
there is no k such that S is decomposable into k convex sets, as the following 
example reveals. 

EXAMPLE 1. For k fixed, let P = To be a square in R2, v a vertex of To, and 
for l<i<=k,  let T~ be a segment with TjNT,={v} ,O<- j<i<=k.  If S =  
t_l {T~ :0=<i<= k}, then S is a union of k + 1 and no fewer convex sets. 

Even if we impose the additional restriction that Q not be contained in the 
union of the ( d -  2)-faces of Po for any polytope P0 properly contained in P, 
examples show that a decomposition for S may require more than c (P') convex 
sets. 
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