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AN R‘ ANALOGUE OF VALENTINE’S
THEOREM ON 3-CONVEX SETS

BY
MARILYN BREEN

ABSTRACT

This paper deals with an R* analogue of a theorem of Valentine which states
that a closed 3-convex set S in the plane is decomposable into 3 or fewer closed
convex sets. In Valentine’s proof, the points of local nonconvexity of S are
treated as vertices of a polygon P contained in the kernel of S, yielding a
decomposition of S into 2 or 3 convex sets, depending on whether P has an even
or odd number of edges. Thus the decomposition actually depends on ¢(P’), the
chromatic number of the polytope P’ dual to P.

A natural analogue of this result is the following theorem: Let S be a closed
subset of R and let Q denote the set of points of local nonconvexity of S. We
require that Q be contained in the kernel of S and that Q coincide with the set
of points in the union of all the (d — 2)-dimensional faces of some d-dimensional
polytope P. Then S is decomposable into ¢ (P’) closed convex sets.

Introduction

Let S be a subset of R The set S is said to be 3-convex if and only if for every
3-member subset of S, at least one of the line segments determined by these
points lies in S. A point q in S is called a point of local convexity of S if and only if
there is some neighborhood N of q for which N N S is convex. If S fails to be
locally convex at some point g in S, then q is called a point of local nonconvexity
(Inc point) of S.

Valentine [3] has proved that a closed 3-convex set S in the plane is
decomposable into 3 or fewer closed convex sets, and in this paper, an attempt is
made to obtain conditions under which an analogue of Valentine’s result may be
proved in R® A key construction in Valentine’s proof involves the set of Inc
points of S, which may be treated essentially as vertices of a polygon P contained
in the kernel of S, yielding a three member decomposition of S when P has an
odd number of edges, and a two member decomposition otherwise. Since for any
closed 3-convex set S, the set of Inc points of S lies in kerS, we replace
Valentine’s requirement that S be 3-convex with this weaker hypothesis.
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The following notation will be employed: If P is a d-dimensional polytope,
each facet F of P determines a hyperplane H = aff F, and throughout the paper,
we will assume that P C cl(H,), where H,, H, denote distinct open halfspaces
corresponding to H. Moreover, we adopt the following familiar terminology: For
any point x in R we say that x is beyond F if x is in H, and that x is beneath F
if x is in H,.

Asusual, conv S, aff S, cl S, int S, and ker S will denote the convex hull, affine
hull, closure, interior, and kernel, respectively, for the set §.

THeOREM 1. Let S be a closed subset of R“ and let Q denote the set of Inc points
of S. If Q is contained in ker S and if Q coincides with the set of points in the union
of all the (d —2)-dimensional faces of some d-dimensional convex polytope P,
then S is decomposable into c (P') closed convex sets, where c(P') denotes the
chromatic number of the graph of the polytope P’ dual to P.

Proor. The proof will require several steps: First we show that every point of
S lies beyond at most one facet of P, and for each facet F of P, the subset
(wedge) W of S beyond F is convex. For facets F and G of P which do not
intersect in a (d — 2)-face, the set W U Wi U P is convex. Finally, the chromatic
decomposition for vertices of P’ induces a partition among facets of P, with no
associated facets intersecting in a (d — 2)-face. This gives a natural decomposi-
tion of wedges of S into c(P’) convex sets.

We begin with the following lemma.

Lemma 1. Let F be any facet of P, V any set of vertices of P with V € F, and let
X denote the collection of hyperplanes determined by facets K of conv(F U V)
with K# F. If x is a point of S beyond F, then x € N{cl(H,):H in ¥ }.

Proor oF LEMMa 1. Note that since VZ F, the polytope conv(F U V) is
d-dimensional. Also, since Q C ker S, it follows that convQ = P C ker S.
Therefore S = cl(int §), and since N {cl(H.): H in ¥} is closed, without loss of
generality we may assume that x € int S and that x is not in the affine hull of any
d-member subset of the vertex set of P.

To prove the lemma, assume on the contrary that x& N {cl(H.): Hin ¥}, to
obtain a contradiction. Then there is some facet K# F of conv (FU V) with x
beyond K. We show that K may be selected so that KNF is a (d —2)-
dimensional face of F.

If dim K N F =d -3, consider the polytope F as a subset of the (d —1)-
dimensional space aff F. Let &, denote the collection of all (d — 2)-dimensional
hyperplanes in aff F determined by facets A, of F. Clearly aff K cannot contain
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any point relatively interior to N{cl(H,): H in &} since this intersection is
exactly F. For each A, in &, we select the corresponding facet A of
conv(FU V) distinct from F and containing A, and define =
{A: A, in o}. Then o is exactly the collection of facets of conv (F U V) which
share a (d —2)-face with F. Moreover, every vertex of K lies in or beneath
A, A € f U{F}, and since aff K contains no relative interior point of
N{cl(H\): H in Ao} in aff F, the region

N{(aff A): A in A}N(aff F),N(aff K),

is empty. We are assuming that xZ aff A for A in &, so x must lie beyond some
A in o, and we may indeed choose K so that KN F is a (d — 2)-face of F.

Select g € relint (K N F), the relative interior of the set K N F. (Incase d = 2,
then K N F = {q} .) Consider the ray R (x, q) emanating from x through q. We
assert that R (x, q) contains points interior to conv(F U V): Let J be any facet
of conv(F U V) to show that R(x,q) ~ [x, q] contains an interval (¢, r) beneath J.
There are three possibilities to consider. Recall that by our previous assumption,
x & aff J. In case x is beyond J, then since g is either in or beneath J, R (x, q) ~
[x, g] necessarily lies beneath J. If x is beneath J and q is, too, then certainly
R (x,q)~ [x, q] contains some open interval (g, r) beneath J. The only remaining
possibility is that x lie beneath J and q lie in J. In this event, J could not be F or
K (since x is beyond both F and K ). Furthermore, since g E FNK NJ, FN
K NJ would be a nonempty face of conv(F U V), and since no three distinct
facets may intersect in a (d — 2)-face, F N K N J would be a face of conv (F U V)
of dimension =d -3, and 3= d. Then since ¢ € F N K N J, g could not belong
to relint (F N K). Therefore, this case cannot occur. We conclude that R (x, q) ~
[x, q] necessarily contains some interval (q,r) beneath J for every facet J of
conv (F U V). Using the fact that there are finitely many such facets, there is
some r, on R (x,q) ~ [x, q] for which (g, r,) C intconv(F U V) C ker S, and the
assertion is proved.

If N is any neighborhood of x in S, then conv (N U {r.}) lies in S and contains q
as an interior point, contradicting the fact that q is an Inc point of S. At last we
have a contradiction, our assumption is false, and x indeed lies in N{cl(H,): H
in ¥}, completing the proof of Lemma 1.

For each facet F of P, we define the wedge W, determined by F to be the set
of points of S which lie beyond F. Clearly every point of S is either in P or in
some wedge, and by Lemma 1, every pair of distinct wedges are disjoint. We
assert that each wedge of S is convex: Let F be any facet of P, W = W¢ the
corresponding wedge with x,y in W. Select p € relint F. Then p € ker S, so
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[p,x]U[p,y] C S. Since x and y are beyond F and p& Q, there can be no Inc
point of S in conv{p,x,y}, and by a lemma of Valentine [4, cor. 1],
conv{p,x,y} C S. Thus [x, y]C S, and since [x,y] is beyond F,[x,y] C W, the
desired result.

To obtain the decomposition for S, one more lemma will be needed.

LEmMA 2. Let F, G be facets of P with dim(F N G)=d - 3, and let W, U be
the wedges of S determined by F, G respectively. Then W U U U P is convex.

ProorF oF LEmMa 2. Since P, W, and U are convex, it is sufficient to consider
pEP,w€E W,u € U, to show that each of the corresponding segments is in
WNUUP.

To see that [w,u] C WU U U P, let T denote the polytope conv (F U G), and
let # denote the collection of hyperplanes determined by facets J of T, where
J# F, G. Then by Lemma 1, each of w and u must lie in N{cl(H,): H in #},
and [w,u]C N{cl(H,): H in #}. Furthermore, since there is a member of ¥
corresponding to every (d —2)-face of F, and w is beyond F while u is not,
[w, u] must intersect F C ker S, and [w, u] C S. Then using the fact that [w, u]
intersects both F and G, it is easy to show that [w,u]C WU U UP.

Similarly, to show [w,p]C WUUUP, let ¥ denote the collection of
hyperplanes determined by facets K of P, where K# F. Repeating our earlier
argument, [w, p] intersects F, and [w, p] C W U P. By a parallel proof, [u, p] C
U U P. Thus each of the segments liesin WU U U P and W U U U P is convex,
finishing the proof of Lemma 2.

We obtain a decomposition for S in the following manner: Let P’ denote the
polytope dual to P, ¢ (P’) the chromatic number of the graph of P’. (The reader is
referred to [1, p. 46, p. 212] and (2, p. 224] for the necessary definitions.) Let
{¥i;:1=i=c(P')} be a chromatic decomposition for the vertices of P'. Recall
that for v, w in ¥, v and w are not joined by an edge of P'. Since there is a
one-one correspondence between vertices of P’ and facets of P, the decomposi-
tion {¥;} induces a partition {# :1=i =c(P')} among facets of P having the
property that for F,G in %, F and G do not intersect in a (d — 2)-face of P.

The partition {% : 1 = i = c(P')} yields the required decomposition for S. For
each %, let W, denote the collection of wedges of S determined by members of
%. Using Lemma 2, an easy induction shows that S, = U{W UP: W in W}is
convex, 1 =i =c(P’). Since S = U{S;:1=i=c(P’)}, this finishes the proof of
the theorem.

The author wishes to thank the referee for suggesting the following result.

THEOREM 2. If P is a d-dimensional convex polytope, then there exists a
compact set S having the following properties:
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1) The set Q of Inc points of S is contained in ker S, and Q is the union of all
(d — 2)-faces of P.

2) IfSis decomposed into k closed convex sets, then k = c (P'), where c(P') is
the chromatic number of the graph of the polytope P' dual to P.

Proor. For each facet F of P, define the wedge of F to be {x:x lies
beyond F and beyond no other facet of P}. Then S should consist of P and the
wedges (or suitably large subsets of wedges) of all the facets of P.

Note that Theorem 2 implies the bound c (P’) is best possible. Also notice that
for d = 2,c(P’) is either 2 or 3, paralleling results obtained by Valentine.

In conclusion, something should be said about the case in which Q is properly
contained in the union of the (d — 2)-faces of P. Without additional hypothesis,
there is no k such that S is decomposable into k convex sets, as the following
example reveals.

ExampLE 1. For k fixed, let P = T, be a square in R?, v a vertex of T,, and
for 1=i=k, let T, be a segment with T,NT, ={v},0=j<i=k If $=
U{T.:0=i=k}, then S is a union of k +1 and no fewer convex sets.

Even if we impose the additional restriction that Q not be contained in the
union of the (d —2)-faces of P, for any polytope P, properly contained in P,
examples show that a decomposition for S may require more than c (P’) convex
sets.
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