AN R^4 ANALOGUE OF VALENTINE'S THEOREM ON 3-CONVEX SETS

BY

MARILYN BREEN

ABSTRACT

This paper deals with an R^{d} analogue of a theorem of Valentine which states that a closed 3-convex set S in the plane is decomposable into 3 or fewer closed convex sets. In Valentine's proof, the points of local nonconvexity of S are treated as vertices of a polygon P contained in the kernel of S, yielding a decomposition of S into 2 or 3 convex sets, depending on whether P has an even or odd number of edges. Thus the decomposition actually depends on c(P'), the chromatic number of the polytope P' dual to P.

A natural analogue of this result is the following theorem: Let S be a closed subset of R^d , and let Q denote the set of points of local nonconvexity of S. We require that Q be contained in the kernel of S and that Q coincide with the set of points in the union of all the (d-2)-dimensional faces of some d-dimensional polytope P. Then S is decomposable into c(P') closed convex sets.

Introduction

Let S be a subset of R^{d} . The set S is said to be 3-convex if and only if for every 3-member subset of S, at least one of the line segments determined by these points lies in S. A point q in S is called a *point of local convexity of S* if and only if there is some neighborhood N of q for which $N \cap S$ is convex. If S fails to be locally convex at some point q in S, then q is called a *point of local nonconvexity* (lnc point) of S.

Valentine [3] has proved that a closed 3-convex set S in the plane is decomposable into 3 or fewer closed convex sets, and in this paper, an attempt is made to obtain conditions under which an analogue of Valentine's result may be proved in \mathbb{R}^d . A key construction in Valentine's proof involves the set of lnc points of S, which may be treated essentially as vertices of a polygon P contained in the kernel of S, yielding a three member decomposition of S when P has an odd number of edges, and a two member decomposition otherwise. Since for any closed 3-convex set S, the set of lnc points of S lies in kerS, we replace Valentine's requirement that S be 3-convex with this weaker hypothesis.

Received June 22, 1974

3-CONVEX SETS

The following notation will be employed: If P is a d-dimensional polytope, each facet F of P determines a hyperplane $H = \operatorname{aff} F$, and throughout the paper, we will assume that $P \subseteq \operatorname{cl}(H_1)$, where H_1, H_2 denote distinct open halfspaces corresponding to H. Moreover, we adopt the following familiar terminology: For any point x in \mathbb{R}^d , we say that x is beyond F if x is in H_2 and that x is beneath F if x is in H_1 .

As usual, conv S, aff S, cl S, int S, and ker S will denote the convex hull, affine hull, closure, interior, and kernel, respectively, for the set S.

THEOREM 1. Let S be a closed subset of R^d and let Q denote the set of lnc points of S. If Q is contained in ker S and if Q coincides with the set of points in the union of all the (d-2)-dimensional faces of some d-dimensional convex polytope P, then S is decomposable into c(P') closed convex sets, where c(P') denotes the chromatic number of the graph of the polytope P' dual to P.

PROOF. The proof will require several steps: First we show that every point of S lies beyond at most one facet of P, and for each facet F of P, the subset (wedge) W_F of S beyond F is convex. For facets F and G of P which do not intersect in a (d-2)-face, the set $W_F \cup W_G \cup P$ is convex. Finally, the chromatic decomposition for vertices of P' induces a partition among facets of P, with no associated facets intersecting in a (d-2)-face. This gives a natural decomposition of wedges of S into c(P') convex sets.

We begin with the following lemma.

LEMMA 1. Let F be any facet of P, V any set of vertices of P with $V \not\subseteq F$, and let \mathcal{X} denote the collection of hyperplanes determined by facets K of conv $(F \cup V)$ with $K \neq F$. If x is a point of S beyond F, then $x \in \cap \{cl(H_1) : H \text{ in } \mathcal{X}\}$.

PROOF OF LEMMA 1. Note that since $V \not\subseteq F$, the polytope conv $(F \cup V)$ is *d*-dimensional. Also, since $Q \subseteq \ker S$, it follows that conv $Q = P \subseteq \ker S$. Therefore $S = \operatorname{cl}(\operatorname{int} S)$, and since $\cap \{\operatorname{cl}(H_1) : H \text{ in } \mathcal{X}\}$ is closed, without loss of generality we may assume that $x \in \operatorname{int} S$ and that x is not in the affine hull of any *d*-member subset of the vertex set of *P*.

To prove the lemma, assume on the contrary that $x \notin \cap \{cl(H_i): H \text{ in } \mathcal{H}\}$, to obtain a contradiction. Then there is some facet $K \neq F$ of conv $(F \cup V)$ with x beyond K. We show that K may be selected so that $K \cap F$ is a (d-2)-dimensional face of F.

If dim $K \cap F \leq d-3$, consider the polytope F as a subset of the (d-1)dimensional space aff F. Let \mathcal{A}_0 denote the collection of all (d-2)-dimensional hyperplanes in aff F determined by facets A_0 of F. Clearly aff K cannot contain M. BREEN

any point relatively interior to $\cap \{cl(H_1): H \text{ in } \mathcal{A}_0\}$ since this intersection is exactly F. For each A_0 in \mathcal{A}_0 , we select the corresponding facet A of conv $(F \cup V)$ distinct from F and containing A_0 , and define $\mathcal{A} =$ $\{A: A_0 \text{ in } \mathcal{A}_0\}$. Then \mathcal{A} is exactly the collection of facets of conv $(F \cup V)$ which share a (d-2)-face with F. Moreover, every vertex of K lies in or beneath $A, A \in \mathcal{A} \cup \{F\}$, and since aff K contains no relative interior point of $\cap \{cl(H_1): H \text{ in } \mathcal{A}_0\}$ in aff F, the region

$$\cap \{(\text{aff } A)_1 : A \text{ in } \mathscr{A}\} \cap (\text{aff } F)_2 \cap (\text{aff } K)_2$$

is empty. We are assuming that $x \notin$ aff A for A in \mathcal{A} , so x must lie beyond some A in \mathcal{A} , and we may indeed choose K so that $K \cap F$ is a (d-2)-face of F.

Select $q \in \text{rel int}(K \cap F)$, the relative interior of the set $K \cap F$. (In case d = 2, then $K \cap F = \{q\}$.) Consider the ray R(x, q) emanating from x through q. We assert that R(x, q) contains points interior to conv $(F \cup V)$: Let J be any facet of conv $(F \cup V)$ to show that $R(x,q) \sim [x,q]$ contains an interval (q,r) beneath J. There are three possibilities to consider. Recall that by our previous assumption, $x \notin aff J$. In case x is beyond J, then since q is either in or beneath J, $R(x, q) \sim dx$ [x, q] necessarily lies beneath J. If x is beneath J and q is, too, then certainly $R(x,q) \sim [x,q]$ contains some open interval (q, r) beneath J. The only remaining possibility is that x lie beneath J and q lie in J. In this event, J could not be F or K (since x is beyond both F and K). Furthermore, since $q \in F \cap K \cap J, F \cap$ $K \cap J$ would be a nonempty face of conv $(F \cup V)$, and since no three distinct facets may intersect in a (d-2)-face, $F \cap K \cap J$ would be a face of conv $(F \cup V)$ of dimension $\leq d-3$, and $3 \leq d$. Then since $q \in F \cap K \cap J$, q could not belong to relint $(F \cap K)$. Therefore, this case cannot occur. We conclude that $R(x, q) \sim C$ [x, q] necessarily contains some interval (q, r) beneath J for every facet J of conv $(F \cup V)$. Using the fact that there are finitely many such facets, there is some r_0 on $R(x,q) \sim [x,q]$ for which $(q,r_0) \subseteq \operatorname{int} \operatorname{conv} (F \cup V) \subseteq \ker S$, and the assertion is proved.

If N is any neighborhood of x in S, then $\operatorname{conv}(N \cup \{r_0\})$ lies in S and contains q as an interior point, contradicting the fact that q is an lnc point of S. At last we have a contradiction, our assumption is false, and x indeed lies in $\cap \{\operatorname{cl}(H_1): H \text{ in } \mathcal{H}\}$, completing the proof of Lemma 1.

For each facet F of P, we define the wedge W_F determined by F to be the set of points of S which lie beyond F. Clearly every point of S is either in P or in some wedge, and by Lemma 1, every pair of distinct wedges are disjoint. We assert that each wedge of S is convex: Let F be any facet of P, $W = W_F$ the corresponding wedge with x, y in W. Select $p \in \text{relint } F$. Then $p \in \text{ker } S$, so $[p, x] \cup [p, y] \subseteq S$. Since x and y are beyond F and $p \notin Q$, there can be no lnc point of S in conv $\{p, x, y\}$, and by a lemma of Valentine [4, cor. 1], conv $\{p, x, y\} \subseteq S$. Thus $[x, y] \subseteq S$, and since [x, y] is beyond $F, [x, y] \subseteq W$, the desired result.

To obtain the decomposition for S, one more lemma will be needed.

LEMMA 2. Let F, G be facets of P with dim $(F \cap G) \leq d-3$, and let W, U be the wedges of S determined by F, G respectively. Then $W \cup U \cup P$ is convex.

PROOF OF LEMMA 2. Since P, W, and U are convex, it is sufficient to consider $p \in P, w \in W, u \in U$, to show that each of the corresponding segments is in $W \cap U \cup P$.

To see that $[w, u] \subseteq W \cup U \cup P$, let T denote the polytope conv $(F \cup G)$, and let \mathscr{J} denote the collection of hyperplanes determined by facets J of T, where $J \neq F, G$. Then by Lemma 1, each of w and u must lie in $\cap \{cl(H_1): H \text{ in } \mathscr{J}\}$, and $[w, u] \subseteq \cap \{cl(H_1): H \text{ in } \mathscr{J}\}$. Furthermore, since there is a member of \mathscr{J} corresponding to every (d-2)-face of F, and w is beyond F while u is not, [w, u] must intersect $F \subseteq \ker S$, and $[w, u] \subseteq S$. Then using the fact that [w, u]intersects both F and G, it is easy to show that $[w, u] \subseteq W \cup U \cup P$.

Similarly, to show $[w, p] \subseteq W \cup U \cup P$, let \mathcal{X} denote the collection of hyperplanes determined by facets K of P, where $K \neq F$. Repeating our earlier argument, [w, p] intersects F, and $[w, p] \subseteq W \cup P$. By a parallel proof, $[u, p] \subseteq U \cup P$. Thus each of the segments lies in $W \cup U \cup P$ and $W \cup U \cup P$ is convex, finishing the proof of Lemma 2.

We obtain a decomposition for S in the following manner: Let P' denote the polytope dual to P, c (P') the chromatic number of the graph of P'. (The reader is referred to [1, p. 46, p. 212] and [2, p. 224] for the necessary definitions.) Let $\{\mathcal{V}_i : 1 \leq i \leq c(P')\}$ be a chromatic decomposition for the vertices of P'. Recall that for v, w in \mathcal{V}_i , v and w are not joined by an edge of P'. Since there is a one-one correspondence between vertices of P' and facets of P, the decomposition $\{\mathcal{V}_i\}$ induces a partition $\{\mathcal{F}_i : 1 \leq i \leq c(P')\}$ among facets of P having the property that for F, G in \mathcal{F}_i , F and G do not intersect in a (d-2)-face of P.

The partition $\{\mathscr{F}_i : 1 \leq i \leq c(P')\}$ yields the required decomposition for S. For each \mathscr{F}_i , let \mathscr{W}_i denote the collection of wedges of S determined by members of \mathscr{F}_i . Using Lemma 2, an easy induction shows that $S_i \equiv \bigcup \{W \cup P : W \text{ in } \mathscr{W}_i\}$ is convex, $1 \leq i \leq c(P')$. Since $S = \bigcup \{S_i : 1 \leq i \leq c(P')\}$, this finishes the proof of the theorem.

The author wishes to thank the referee for suggesting the following result.

THEOREM 2. If P is a d-dimensional convex polytope, then there exists a compact set S having the following properties:

1) The set Q of lnc points of S is contained in ker S, and Q is the union of all (d-2)-faces of P.

2) If S is decomposed into k closed convex sets, then $k \ge c(P')$, where c(P') is the chromatic number of the graph of the polytope P' dual to P.

PROOF. For each facet F of P, define the wedge of F to be $\{x : x \text{ lies } beyond F \text{ and beyond no other facet of } P\}$. Then S should consist of P and the wedges (or suitably large subsets of wedges) of all the facets of P.

Note that Theorem 2 implies the bound c(P') is best possible. Also notice that for d = 2, c(P') is either 2 or 3, paralleling results obtained by Valentine.

In conclusion, something should be said about the case in which Q is properly contained in the union of the (d-2)-faces of P. Without additional hypothesis, there is no k such that S is decomposable into k convex sets, as the following example reveals.

EXAMPLE 1. For k fixed, let $P = T_0$ be a square in R^2 , v a vertex of T_0 , and for $1 \le i \le k$, let T_i be a segment with $T_j \cap T_i = \{v\}, 0 \le j < i \le k$. If $S = \bigcup \{T_i : 0 \le i \le k\}$, then S is a union of k + 1 and no fewer convex sets.

Even if we impose the additional restriction that Q not be contained in the union of the (d-2)-faces of P_0 for any polytope P_0 properly contained in P, examples show that a decomposition for S may require more than c(P') convex sets.

References

1. Branko Grünbaum, Convex Polytopes, John Wiley and Sons, New York, 1967.

2. Oystein Ore, *Theory of Graphs*, Amer. Math. Soc. Colloquium Publications 38, Providence, 1962.

3. Frederick A. Valentine, A three point convexity property, Pacific J. Math. 7 (1957), 1227-1235.

4. Frederick A. Valentine, Local convexity and L_n sets, Proc. Amer. Math. Soc. 16 (1965), 1305–1310.

MATHEMATICS DEPARTMENT

UNIVERSITY OF OKLAHOMA NORMAN, OKLAHOMA 73069, USA